Your browser doesn't support javascript.
節目: 20 | 50 | 100
结果 1 - 5 de 5
过滤器
添加過濾器

主要主题
年份範圍
1.
medrxiv; 2023.
预印本 在 英语 | medRxiv | ID: ppzbmed-10.1101.2023.12.22.23300471

摘要

We propose, implement, and evaluate a method for nowcasting the daily number of new COVID-19 hospitalizations, at the level of individual US states, based on de-identified, aggregated medical insurance claims data. Our analysis proceeds under a hypothetical scenario in which, during the Delta wave, states only report data on the first day of each month, and on this day, report COVID-19 hospitalization counts for each day in the previous month. In this hypothetical scenario (just as in reality), medical insurance claims data continues to be available daily. At the beginning of each month, we train a regression model, using all data available thus far, to predict hospitalization counts from medical insurance claims. We then use this model to nowcast the (unseen) values of COVID-19 hospitalization counts from medical insurance claims, at each day in the following month. Our analysis uses properly-versioned data, which would have been available in real-time, at the time predictions are produced. In spite of the difficulties inherent to real-time estimation (e.g., latency and backfill) and the complex dynamics behind COVID-19 hospitalizations themselves, we find overall that medical insurance claims can be an accurate predictor of hospitalization reports, with mean absolute errors typically around 0.4 hospitalizations per 100,000 people, i.e., proportion of variance explained around 75%. Perhaps more importantly, we find that nowcasts made using medical insurance claims can qualitatively capture the dynamics (upswings and downswings) of hospitalization waves, which are key features that inform public health decision-making.


主题 s
COVID-19
2.
arxiv; 2023.
预印本 在 英语 | PREPRINT-ARXIV | ID: ppzbmed-2307.16895v1

摘要

We study the problem of uncertainty quantification for time series prediction, with the goal of providing easy-to-use algorithms with formal guarantees. The algorithms we present build upon ideas from conformal prediction and control theory, are able to prospectively model conformal scores in an online setting, and adapt to the presence of systematic errors due to seasonality, trends, and general distribution shifts. Our theory both simplifies and strengthens existing analyses in online conformal prediction. Experiments on 4-week-ahead forecasting of statewide COVID-19 death counts in the U.S. show an improvement in coverage over the ensemble forecaster used in official CDC communications. We also run experiments on predicting electricity demand, market returns, and temperature using autoregressive, Theta, Prophet, and Transformer models. We provide an extendable codebase for testing our methods and for the integration of new algorithms, data sets, and forecasting rules.


主题 s
COVID-19
3.
arxiv; 2022.
预印本 在 英语 | PREPRINT-ARXIV | ID: ppzbmed-2201.12387v2

摘要

The U.S. COVID-19 Forecast Hub aggregates forecasts of the short-term burden of COVID-19 in the United States from many contributing teams. We study methods for building an ensemble that combines forecasts from these teams. These experiments have informed the ensemble methods used by the Hub. To be most useful to policy makers, ensemble forecasts must have stable performance in the presence of two key characteristics of the component forecasts: (1) occasional misalignment with the reported data, and (2) instability in the relative performance of component forecasters over time. Our results indicate that in the presence of these challenges, an untrained and robust approach to ensembling using an equally weighted median of all component forecasts is a good choice to support public health decision makers. In settings where some contributing forecasters have a stable record of good performance, trained ensembles that give those forecasters higher weight can also be helpful.


主题 s
COVID-19
4.
arxiv; 2021.
预印本 在 英语 | PREPRINT-ARXIV | ID: ppzbmed-2112.06697v2

摘要

We propose, implement, and evaluate a method to estimate the daily number of new symptomatic COVID-19 infections, at the level of individual U.S. counties, by deconvolving daily reported COVID-19 case counts using an estimated symptom-onset-to-case-report delay distribution. Importantly, we focus on estimating infections in real-time (rather than retrospectively), which poses numerous challenges. To address these, we develop new methodology for both the distribution estimation and deconvolution steps, and we employ a sensor fusion layer (which fuses together predictions from models that are trained to track infections based on auxiliary surveillance streams) in order to improve accuracy and stability.


主题 s
COVID-19
5.
medrxiv; 2021.
预印本 在 英语 | medRxiv | ID: ppzbmed-10.1101.2021.07.12.21259660

摘要

The COVID-19 pandemic presented enormous data challenges in the United States. Policy makers, epidemiological modelers, and health researchers all require up-to-date data on the pandemic and relevant public behavior, ideally at fine spatial and temporal resolution. The COVIDcast API is our attempt to fill this need: operational since April 2020, it provides open access to both traditional public health surveillance signals (cases, deaths, and hospitalizations) and many auxiliary indicators of COVID- 19 activity, such as signals extracted from de-identified medical claims data, massive online surveys, cell phone mobility data, and internet search trends. These are available at a fine geographic resolution (mostly at the county level) and are updated daily. The COVIDcast API also tracks all revisions to historical data, allowing modelers to account for the frequent revisions and backfill that are common for many public health data sources. All of the data is available in a common format through the API and accompanying R and Python software packages. This paper describes the data sources and signals, and provides examples demonstrating that the auxiliary signals in the COVIDcast API present information relevant to tracking COVID activity, augmenting traditional public health reporting and empowering research and decision-making.


主题 s
COVID-19
搜索明细